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THE VIBRATION MODES AND EIGENFREQUENCIES OF CONICAL 
(AND CYLINDRICAL) SHELLS* 

Tang Chao-Tsien 

(Sian Chiao-Tung University) 

ABSTRACT. An exact solution of vibration modes and transverse 
eigenfrequencies of conical shells is studied. Donnell type differen- 
tial equations with variable coefficients are used, neglecting the 
tangential components of inertia force. 

recommended. When vibrating, the elastic restoring effects in the 
shell due to membrane extensional forces and bending (and twisting) 
moments are regarded as two springs in parallel. Then this element 
of shell is equivalent to the parallel springs system with single 
degree of freedom, and the whole shell can be represented by the sum 
of infinite systems of this single type, where the stiffness of 
springs are functions of the coordinates. 

shells with arbitrary conical angle a and various boundary conditions 
(the conditions at the vertex point of complete conical shell are 
discussed.) 

In order to reduce the computing effort, a simplified method is 

The analytical method presented in this paper can be used for 

In this paper the exact solution of the vibrational modes and transverse 
vibration eigenfrequencies of conical shells is found analytically. A simpli- 
fied calculation method is suggested for practical purposes. 

We use thin shell theory type differential equations or Donnell type dif- 
ferential equations of motion. Neglecting the tangential components of inertia 
forces, we deduce an uncoupled equation for the transverse displacement func- 
tion, from which a power series solution for the vibrational mode is obtained. 
It is found that the vibrational mode of a conical shell possesses nonperiodic 
oscillatory characteristics and a rapidly increasing amplitude. 

Owing to the complexity of the above calculations, a simplified method is 
suggested. The physical concept is as follows. Figure 2 shows the physical 
model constructed for an arbitrary element of the shell. The membrane tension 
caused by vibration and the restoring forces caused by bending moments are con- 
sidered to be two springs with the spring constants k The element of 
the shell has the mass m. In this way we obtain a parallel spring system with 
a single degree of freedom. 
infinite sum of these systems, where the stiffness of the spring is afunction 

and k2. 

Therefore, the entire shell is equivalent to an 
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of the coordinates. The eigenfrequencies of this model can be calculated from 

a superposition of w2 = - + - = w1 + w2, where w and w2 can be obtained in- 

dependently from membrane theory and pure bending theory. 
greatly simplified and satisfactory results were obtained. 
experiments is made at the end of this paper. 

kl k2 2 2 
m m 1 

. The calculations are 
A comparison with 

The present theory can be applied on conical shells with any cone angle. 
As a check, we calculated the a = 0 case, which is the circular cylinder. A 
simplified method to calculate the vibration of cylindrical shells is also 
presented. The treatment of the apex boundary conditions is also discussed. 

SYMBOLS 

a -- mean radius of cylindrical shell 
E -- coefficient of elasticity (shell and material) 
h -- shell thickness 
g -- acceleration of gravity 
R -- height of cylindrical shell 
n - eigenvalue of circumferential vibration of conical (cylindrical) shell 

u, v, w -- longitudinal, circumferential, and lateral displacements 
U(x), V(x), W(x) -- vibrational mode function 
x, y, z -- longitudinal, circumferential, and lateral coordinates of coni- 
xo -- the distance measured along a generator between the vertex and the 

x -- the distance measured along a generator between the vertex and the 
rr -- semi-vertex angle 
8 -- circumferential angular coordinate of conical shell (positive direc- 

tion counterclockwise) 
u -- Poisson ratio (shell material) 
p -- density of shell material 
w -- eigenfrequency (circular frequency) 

(integer) 

cal (cylindrical) shell 

top (smaller end) of conical shell 

bottom (larger end) of conical shell 

3pz+ lop - 1 v’ ( 1 - - p  )z+” 

1292 
A2 ’ 

‘I=- 

n 
v - -  

sin a ’ 

Symbols for differential operators: 
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1 d  
x d x  x’ 

d 
dX 

A = - - ,  d 
A 2 = x z ( x & ) ,  ... 

1. Introduction 

In recent years authors of many countries investigated the probLem of 
statics of conical shells. 
even for simple problems of line vibrations. As far as the author knows, 
Strutt (Ref. l), in 1933, first studied the vibrations of a conical shell under 
the conditions of an undistorted middle plane. However, this is not consistent 
with the actual situation. In 1938 Federhofer (Ref. 2 ) ,  based on Pfluger’s 
(Ref. 3) stability analysis of conical shells, derived the general equations for 
the vibrations of a conical shell. He used a power function x2(1 - x/x,)* as 

an approximation to the vibration mode function, and sought solutions using 
Rayleigh’s method. He also discrssed the condition of the undistorted middle 
plane. 
approximation to the vibration mode function (same as in the case of cylindri- 
cal shell), and used Galerkin’s method to solve for axisymmetric vibrations of 
the conical shell and other problems. In the same year, Herrmann and Mirsky 
jiief. 6 j made simiiar investigations. They also used a iriguiioiiietric fuiictioii 
as the approximate vibration mode and used the Rayleigh-Ritz method to calculate 
eigenfrequencies. In addition, they discussed the axisymmetric vibrations under 
the assumptions of membrane theory, and introduced some solutions containing 
certain special conditions. Obviously, the solutions using trigonometric func- 
tions as the approximate vibration mode can only be applied to small cone angles 
(cone vertex angle 2a < 30”) and truncated conical shells. The reason for this 
is that the lateral vibration mode of a conical shell is not periodic as is the 
case for a circular cylindrical shell. In 1960 Alumyae (Ref. 7)  investigated 
the axisymmetric vibration of a conical shell and discussed the characteristics 
and the integration of the differential equations, but he did not go into general 
cases. In conclusion, the research on problems of vibrating conical shells is 
still considered inadequate. There are also discrepancies in the calculations 
of existing work. 
until now there exist neither experimental nor more accurate theoretical analyses. 

However, the dynamical problem is rarely studied, 

After 1958 Trapezin (Ref. 4 ,  5) used trigonometric functions as an 

/135 

We cannot present a more detailed discussion here because 

We think that although very accurate results can be obtained by solving 
the equations directly, it can be accomplished only under an appropriate choice 
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. of t h e  v i b r a t i o n a l  mode funct ion.  A t  present  t h e r e  e x i s t s  no dependable experi-  
ment o r  theory upon which t h i s  choice of v i b r a t i o n a l  mode func t ion  can b e  based. 
Due t o  t h e  mathematical s imilar i t ies ,  we r e f e r  t o  t h e  more thoroughly i n v e s t i -  

. gated works i n  t h e  f i e l d  of i n s t a b i l i t y  of con ica l  s h e l l s .  We should mention 
t h e  works of Mushtari and Sachenkov (Ref. 8) who used an interchange of coor- 
d i n a t e s  t o  ob ta in  a more accu ra t e  approximate so lu t ion ; .Hof f  (Ref. 9 ,  10)  under 
t h e  assumptions of small  cone angles ,  used a s i m p l i f i e d  strain-displacement re- 
l a t i o n s h i p  (simpler than f l a t  s h e l l  theory) t o  d e r i v e  an independent equat ion 
f o r  an exac t  s o l u t i o n ,  b u t  t h e  convergence of h i s  series s o l u t i o n  i s  r a t h e r  
poor, which l i m i t s  i t s  p r a c t i c a l  u se fu l lnes s .  Seide (Ref. 11, 12) went one 
s t e p  f u r t h e r  than (Ref. 8) and worked out numerous s o l u t i o n s .  
forms and r e s u l t s  of va r ious  approximate s o l u t i o n s  of t h e  s t a b i l i t y  problem. 
Other au tho r s  used x2 s i n  (-~x/!2) power funct ion as t h e  form of approximate 
s o l u t i o n  i n  s t a b i l i t y  c a l c u l a t i o n s .  This is  a l s o  c l o s e r  t o  t h e  a c t u a l  s i t u a t i o n  
than using t r igonometr ic  funct ions.  

H e  compared t h e  

The o b j e c t  of t h e  p re sen t  paper i s  t o  o b t a i n  a more accu ra t e  s o l u t i o n  t o  
t h e  problem of t h e  v i b r a t i o n a l  modes and eigenfrequencies  of a c o n i c a l  s h e l l .  
A s  w e  a l l  know, i t  i s  very d i f f i c u l t  t o  use a n a l y t i c a l  methods t o  s o l v e  t h e  
gene ra l  v ib ra t iona lequa t ions  (Ref. 2) .  The p resen t  paper u t i l i z e s  t h e  f l a t  
s h e l l  theory equations (Ref. 15,  16) ( c i r c u l a r  c o n i c a l  s h e l l  is  t h e  zero Gaus- 
s i a n  cu rva tu re  s h e l l ,  t h i s  t ype  of equation 
n e g l e c t  t h e  t a n g e n t i a l  components of t h e  i n e r t i a l  f o r c e s  i n  t h e  governing equa- 

t i o n s  t o  f a c i l i t a t e  computation"'. 
a n a l y s i s ,  t hose  terms are indeed h ighe r  o rde r  terms compared with t h e  terms due 
t o  l a te ra l  i n e r t i a l  fo rces  and i n t e r n a l  fo rces ,  and thus  can be neglected.  
Besides, from t h e  p r a c t i c a l  computational view p o i n t ,  we u sua l ly  neg lec t  t h e s e  
terms because t h e  l o n g i t u d i n a l  and c i r cumfe ren t i a l  v i b r a t i o n a l  e igenfrequencies  
are muchlarger than t h e  la teral  eigenfrequency. Therefore,  t h e  above s i m p l i f i -  
c a t i o n  is a reasonable one. Af t e r  some r o u t i n e  c a l c u l a t i o n s ,  t h e  f i n a l  gene ra l  
a n a l y t i c a l  s o l u t i o n  f o r  t h e  v i b r a t i o n  of t h e  c o n i c a l  s h e l l  can be app l i ed  f o r  
va r ious  cone angles ,  i r r e s p e c t i v e  of whether t h e  cone is  truncated o r  whole 
(but n > 2 has t o  hold) .  
t i o n s  a t  t h e  vertex i n  t h e  la t ter  case. 
be a l s o  app l i ed  t o  t h e  case of a con ica l  s h e l l  p l a t e .  

can be  used when n > 3. W e  a l s o  

From t h e  viewpoint of o r d e r  of magnitude 

W e  a l s o  suggested t h e  t reatment  of t h e  boundary condi- 
The r e s u l t s  obtained can, of course,  

Because t h e  gene ra l  a n a l y t i c a l  s o l u t i o n  i s  too  complicated, t h i s  method i s  

Therefore,  f o r  p r a c t i c a l  purposes, w e  a l s o  introduced a s i m p l i f i e d  cal- 
u s e f u l  i n  t h e  s tudy of v i b r a t i o n a l  modes, b u t  no t  u s e f u l  i n  engineer ing applica- 
t i o n s .  
c u l a t i o n  method. 

2. The Basic Equations f o r  t h e  Vibrat ion of a Conical S h e l l  

W e  adopt a coordinate  system x ,  8 ,  z which denote,  r e s p e c t i v e l y ,  t h e  gener- 
a t o r  d i r e c t i o n ,  t h e  c i r c u m f e r e n t i a l  d i r e c t i o n ,  and t h e  normal d i r e c t i o n  normal 
t o  t h e  middle plane of t h e  c o n i c a l  s h e l l  ( a  right-handed system). The co r re s -  
ponding displacements are denoted by u ,  v,  w. 
t i ve  when d i r e c t e d  inwards. 

Note t h a t  from now on, w i s  posi-  

An independent equat ion can be derived without  neg lec t ing  t h e  i n e r t i a l  terms 
i n  t h e  beginning, bu t  neg lec t ing  some r e l a t e d  small  t e r m s  i n  t h e  course of t h e  
d i f f e r e n t i a l  operat ion.  However, the c a l c u l a t i o n s  become very involved. 
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According to Hooke’s law and the results from the integration of stress 
along the thickness of the shell (where we have neglected z / ( x  tg a) in the 
integration and we shall discuss the vertex point later), we can obtain the re- 
lationships which hold between the internal forces, internal moments and strain, 
change of curvature and torsional rate from a consideration of the equilibrium 
of an elemental volume on the shell. 
lationship derived by Love (Ref. 17), we can obtain a system of equations 
describing the general motion in terms of the displacements. 
cannot solve these differential equations with variable coefficients. There- 
fore, some simplification is necessary. Due to the accuracy required in prac- 
tice, one can also make some simplifications, such as neglecting the effect of 
the tangential components of the displacements u, v on the change of curvature 
kx, k 0 
assumptions of torque theory in practical engineering (flat shell theory 
[Ref. 151) we can derive a simplified set of equations describing the general 
motion of the shell (frequently called Donnell-type equations): 

Then, using the strain-displacement re- 

However, we still 

/136 
and on the torsional rate T. In other words, using the conventional 

We shall discuss briefly the properties of this set of equations. Let us 
consider the two limits: (a) A s  a + 0 ,  x -f to, x sin a and x tg a -+ a, the 
above equations reduce to the equations of vibration (Donnell type) for a cir- 
cular cylindrical shell with radius a; (b) If we take a -+ n/2 and for x, let 
x sin a -f r, x tg a + 00, and if we utilize the conventional assumptions used 
in the calculations of the vibrations of circular plate, i.e., neglecting u, v, 
then the equations of vibration for a circular plate can be deduced from equa- 
tion (1). Thus, we predict equation (1) can be applied to cases for any angle 
a. Note that using flat shell theory or Donnell type equations, the require- 
ment is << 1, for example < - - -  (this is also the usual h 

x tg a 30 20 x tg a 
definition of a “thin” shell). 
conical shells, but obviously cannot be satisfied at the vertex points 
conical shells. Equation (1) cannot be valid, even in the vicinity of the 
vertex point. Further on, the problem of vibration discussed in this paper 
deals with properties of the whole shell, which is different from problems 
related to local stresses. 
tial (strain) energy of the region near the vertex due to vibration is very 
small compared to the whole shell. 
does not satisfy the thin shell requirement is very small (its volume is about 
one percent of the whole) and due to the following calculations and experiments, 
the strain of the region near the vertex is also very small. 

This requirement is satisfied for truncated 
of whole 

From the energy view point, the kinetic and poten- 

Because the region near the vertex which 

We can say that 
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. t h e  energy p e r  volume is  very small. 
t h e  above c o n t r a d i c t i o n  should not lead t o  very l a r g e  e r r o r s  i n  t h e  s o l u t i o n ,  
and w e  w i l l  apply equation (1) t o  t h e  c a l c u l a t i o n  of  v i b r a t i o n  of t h e  whole 

a < 5" - 10") o r  very s h o r t  whole conical  s h e l l s .  
c o n i c a l  s h e l l s  should be  regarded as v a r i a b l e  c r o s s  s e c t i o n  columns,and column- 
l i k e  v i b r a t i o n s  should be  considered (the case of n = 1). These cases are out  
of t h e  scope of t h e  present  paper. 
s i t u a t i o n s  when n > 2.  

Thus, i n  t h e  c a l c u l a t i o n s  of v i b r a t i o n s ,  
+ 

. s h e l l .  The above d i scuss ion  does not  apply f o r  very s m a l l  cone angles  Guch as 
Usually these  k inds  of 

The following r e f e r s  only t o  s h e l l  v i b r a t i n g  

3. Solut ion of  t h e  Vibrat ion Equation 

I f  w e  want t o  a n a l y t i c a l l y  so lve  the set  of equat ions (l), an independent 
equat ion should f i r s t  b e  derived. 
u sua l ly  done i n  t h i n  s h e l l  s t u d i e s ,  and make t h e  assumption t h a t  t h e  t a n g e n t i a l  
i n e r t i a l  f o r c e s  can be  neglected wh i l e  the lateral  i n e r t i a l  f o r c e s  are r e t a i n e d .  
From t h e  form of equat ions (l), i t  can be shown t h a t  t h e  s o l u t i o n  t o  u ,  v ,  w 

must b e  i n  t h e  form of a series i n  x cos ne s i n  u t .  S u b s t i t u t i n g  t h i s  i n t o  t h e  
equat ion,  w e  see t h a t  t h e  re la t ive magnitudes of t h e  terms rep resen t ing  t h e  

i n t e r n a l  f o r c e s  can b a s i c a l l y  be  divided i n t o  t h r e e  levels of importance: m 

o r  v , m o r  v, and 1. These l e v e l s  were obtained from a comparison of t h e  terms 
r e p r e s e n t i n g  t h e  same displacement (any one of u, v, w) .  Furthermore, i f  w e  
consider  t h e  case w >> v, u ,  t h e  whole s e t  of equat ions can b e  divided i n t o  many 
more levels of importance ( 4  - 5 l e v e l s ) .  The importance of t h e  i n e r t i a l  f o r c e s  

is rep resen ted  by p (  

eigenfrequency is  n o t  too high. A t  t h e  same t i m e ,  both v and m have l a r g e r  
va lues ,  a t  least v o r  m > 5 - 6 (usua l ly  they are both g r e a t e r  than 10 ) .  There- 
f o r e ,  t h e  terms rep resen t ing  t h e  t a n g e n t i a l  components of t h e  i n e r t i a l  f o r c e s  
i n  equa t ions  (1) are indeed t h e  h ighes t  o rde r  s m a l l  terms, and can be neglected 
without  n o t i c e a b l e  e r r o r s  i n  t h e  so lu t ions  f o r  t h e  v i b r a t i o n a l  modes and t h e  

Th obtain t h i s ,  w e  assume w >> v > u as is  

m 

2 

2 

2 
u2x2 This is always smaller than 1 i f  t h e  lateral  /137 1 - p )  

1' gE 

iateLal elgeiiii-eq-ueiLcies . 
I n  a d d i t i o n ,  i n  t h e  c a l c u l a t i o n s  we s u b s t i t u t e ( l  + p) f o r  t h e  c o e f f i c i e n t  

8 - p)/2 
i n  (1). 
angle  assumption i n  (Ref. 9) .  From t h e  o rde r  of  magnitude a n a l y s i s ,  t h i s  does 
n o t  seem t o  be reasonable:.) When p = 1/3,  t h i s  s u b s t i t u t i o n  i s  e n t i r e l y  c o r r e c t .  
From s o l i d  s ta te  physics  research,  i t  follows t h a t  t h e  Poisson r a t i o  of common 
metals l ies i n  t h e  v i c i n i t y  of 1/3.(aluminum, titanium o r  copper a l l o y s ) .  Note 
t h a t  t h e  terms wi th  t h e  c o e f f i c i e n t  ( 3 -  p ) / 2  are of medium importance ( Q  l e v e l )  
i n  t h e  equat ions.  Thus, i f  t h e r e  were s l i g h t  d i sc repanc ie s  i n  t h e  c o e f f i c i e n t s ,  
t h e  e f f e c t  on t h e  e n t i r e  c a l c u l a t i o n  i s  s m a l l  (about t h e  same e r r o r  as i n  
neg lec t ing  t h e  t a n g e n t i a l  component of  the i n e r t i a  f o r c e s ) .  
material property l.~ < 0.30 o r  > 0.40, the above s u b s t i t u t i o n  i s  s t i l l  al lowable.  

which appear i n  t h e  f i r s t  and second equat ions of t h e  set  of equat ions 
(We a l s o  po in t  out  t h a t  t h e s e  terms were neglected by t h e  s m a l l  cone 

Thus, even i f  t h e  

With t h e  above assumptions, w e  a l s o  assume s o l u t i o n s  of t h e  form 
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u = U(r)cosnOsinut, 

tl = V ( x )  sin dl sin oc, 

w = W(x)cosnOsinut, 

Then equat ions (1) reduce i n t o  t h e  following set of equations: 

Using t h e  d i f f e r e n t i a l  ope ra to r  A on equat ion (3b) and s u b s t i t u t i n g  t h e  

va lue  of A (  5) from equat ion (3a), a f t e r  some a lgeb ra  w e  o b t a i n  t h e  coupled 

equat ions f o r  U and W (which is  then mul t ip l i ed  by x ). 

equat ion (3a) by x , d i f f e r e n t i a t e  with r e spec t  t o  A 

of A (x U) i n t o  t h e  equation. There r e s u l t  t h e  following coupled equat ions 

f o r  V and W: 

- 2  Then w e  mul t ip ly  
4 and s u b s t i t u t e  t h e  va lue  0' 2 

0 

Afte r  applying t h e  ope ra to r  L t o  equation (3c), w e  s u b s t i t u t e  equat ions (4a) 
and (4b) ,  and n o t e  t h a t  

L [ A I u A . [ L I ,  - 

Then an independent (uncoupled) equation f o r  t h e  l a t e r a l  v i b r a t i o n a l  mode func- /138 
t i o n  W(x) i s  obtained: 

For t h i s  d i f f e r e n t i a l  equat ion with v a r i a b l e  c o e f f i c i e n t s  w e  assume a power 
series type so lu t ion :  

7 



W W 

W ( x )  = xr C,X' = 2 CSX'+', 
5 = O  s - 0  

S u b s t i t u t i n g  t h e  above equat ion i n t o  equation (4c ) ,  an i n d i c i a l  equat ion i s  ob- 
t ained : 

(6 1 ( f 2  - - 2)'- y q [ ( r  - 2)4- 2(v2 + i ) ( r  - 212 + d1* 0. ~ 

The 

The 

Irj 
whi 

r o o t s  are: 

(7) 

values  of r ( j  = 1, 2, ..., 8) are a l l  real .  W e  see t h a t  t h e  magnitude of 

is  comparable t o  t h e  magnitude of v ( i n  gene ra l  t h e  value of v i s  l a r g e ) ,  
j 

h ag rees  w i t h  t h e  previous assumption t h a t  m and v are of t h e  same orde r  of 
magnitude. Using t h e  cond i t ion  t h a t  t he  c o e f f i c i e n t s  of each exponent s are 
zero,  we o b t a i n  t h e  c o e f f i c i e n t s  C (the fol lowing are m u l t i p l e s  of C ):  j s  30 

... = 0, w e  have Since C = c  - - 
j ,-1 j , -2  

where, i n  this equat ion,  C,- is  an Undetermined cons t an t .  Then t h e  s o l u t i o n  of 

W(x) can b e  w r i t t e n  as 
J"  

Later on w e  s h a l l  u se  C ( j  = 1, 2,  3,  ..., 8) as an a r b i t r a r y  cons t an t .  There- 

f o r e ,  t h e  undetermined cons t an t  i n  f . ( x )  can be  taken as 1 o r  any a r b i t r a r y  

value.  Because t h e  d i f f e r e n c e  between the i n d i c i a l  r o o t s  r and r as w e l l  

as between r 

Z (x) and Z (x) become l i n e a r l y  dependent. W e  must f i n d  two more independent 2 4 
s o l u t i o n s .  

j 

J 
1 3' 

and r4, i s  2, t h e  v i b r a t i o n a l m o d e  func t ions  Z (x) and Z,(x), 2 1 

According t o  t h e  gene ra l  t h e o r i e s  of power series s o l u t i o n s  and consider ing 
t h e  case r = +v, w e  assume 

C,, = &[ rj + (- I)'Y] ( i  = 1, i>, I (12) 
j -  

8 



Using t h e  symbol: 

f o u r  independent s o l u t i o n s  can be w r i t t e n  down 

where 

11 2 ( r , + s -  2) + 2( rj  + S) + 
x [ ( r j  + S -  2)' 

[( rj + s - 2)' - u'] [ ( s i  + s)' - u'] 
' ( r j  + S -  2)' + e ]  - 

I 

+ { [ ( r j  + -+)2 - y2J[(rj + s - 2)' - ~ 2 1 1 )  

(16) ( i  = 1, 21, (S = 4, 6, 8 ,  10 ,12 ,  * *  *); 
$ 8  1 (17) 

Z ~ ( X )  = d;OXv[duX2 + di4r4 + . + d& + * 1, 
Zr(r) = k - q d a x 2  + A4X4 + + &x' + * * a]. 

W e  can a l s o  w r i t e  Z (x) = xr3f3(x) and Z4(x) = xr4f4(x).  Because equat ion (11) 

a l r eady  con ta ins  t h e  a r b i t r a r y  constants  C . ( j  = 1, 2, 3, ..., 81, w e  s h a l l  make 
3 

3 

- '80 
= 1 without  any l o s s  of general-  dVl0 = d'20 = 1 and C30 = c40 - - c50 - - ... - 

i t y  . 
Under c e r t a i n  condi t ions,  v may be an i n t e g e r .  Z (x) and Z (x) again be- 3 4 

come l i n e a r l y  dependent. I n  t h i s  case w e  must take 

9 



i n  which d '  = d '40 ( r j  + v - 2 ) ,  where t h e  procedure i s  

t h e  same as when j = 1, 2 ,  bu t  t ak ing  j = 4, r = -v + 2. When s = 2v - 2 ,  

2v, 2v + v - 2) f o r  [ r .  + ( - l ) j v ]  i n  equat ions (13) 

and (16).  This i s  similar t o  t h e  previous case of s = 2 ,  4, 6 ,  ... However, 
when s = 2 ,  4, 6 ,  ..., 2v - 4, w e  should t a k e  d'  = C / C  The rest i s  t h e  

s a m e ,  and d'40 can a l s o  be assumed as uni ty .  

i s  determined by C 40 40 

j + 2 ,  . . . , s u b s t i t u t e  ( r  
j J 

4s 4s  40' 

1 
3 When t h e  Poisson r a t i o  p = -, w e  see t h a t  r 5 9  r6¶ '7, '8 = 2' + 3 ,  

- + v + 1, i .e . ,  Because i n  
t h e  series s o l u t i o n  we only take even values of s,  t h e  func t ions  Z5(x), ..., 
Z (x) are s t i l l  independent. 

t h e  i n d i c i a 1  r o o t s  again d i f f e r  by an i n t e g e r  2. 

8 

According t o  Cauchy's cri teria w e  know a t  once t h e  series f o r  t h e  f . ( x )  

are convergent. However, t h e  convergence i s  r a t h e r  slow. Suppose w e  want t o  
c a l c u l a t e  t h e  value of f . ( x )  t o  4 o r  5 s i g n i f i c a n t  d i g i t s .  W e  must t ake  10, 

16,  and 24 terms r e s p e c t i v e l y  at x = 2, 5, 10. The c h a r a c t e r i s t i c  exponents 
and v a r i a b l e s  of t h e  series are very similer t o  Bessel func t ions  f o r  l a r g e  
arguments. 

J 

J 

For example, i n  Figure 1, t h e  curve f o r  f (x) shows t h e  p r o p e r t i e s  of / 140 3 
t h e  v i b r a t i o n a l  mode funct ion.  For c l a r i t y  t h i s  f i g u r e  uses two sets of scales. 

The c h a r a c t e r i s t i c  of t h e  curve when 
x > 5 is  similar t o  t h a t  f o r  x < 5, 
which is a curve with v a r i a b l e  per iod 
and inc reas ing  amplitude. (For i n s t a n c e ,  
when x = 5, 8, 10,  ..., f , (x )  = -2446.2, 

-85872, + 767000, ...). Because t h e  
amplitude i n c r e a s e s  s o  f a s t  t h a t  i t  i s  

omitted t h a t  p a r t  of t h e  f i g u r e .  From 
t h i s  w e  see t h a t  f .  (x) i s  a non-periodic 

J 
o s c i l l a t o r y  func t ion  with r a p i d l y  in- 
creasing amplitude. Its amplitude would 
inc rease  even f a s t e r  a f t e r  being mult i -  

3 .  a z ~ m  u u  

"% iriconvmi2nt f o r  plstting, we h2Ve 

i l l  
Figure  1. p l i e d  by x r j  (and when r is  p o s i t i v e ) .  i - 

These p r o p e r t i e s  can a l s o  b e  r e f e r r e d  t o  
when choosing t h e  pre-assumed v i b r a t i o n  

However, t h e  slow con- mode func t ion  i n  c a l c u l a t i n g  t h e  approximate s o l u t i o n s .  
vergence of t h e  series f . ( x )  g r e a t l y  l i m i t s  t h e  p r a c t i c a l  u se fu lness  of t h i s  

kind of s o l u t i o n .  One is  t o  f i n d  
an asymptotic expression from t h e  mathematical viewpoint. 
s imp l i fy  t h e  c a l c u l a t i o n s  from pure ly  physical  concepts.  
duced as follows. 

J 
There are two ways t o  s o l v e  t h i s  problem. 

The o t h e r  i s  t o  
This s h a l l  be  i n t r o -  

10  
i 



From t h e  l a te ra l  v i b r a t i o n a l  mode funct ion W(x) and equat ions (4a) and (4b) 
w e  f i n d  

When v i s  an i n t e g e r ,  t h e  func t ions  X (x) and Y (x) f o r  j = 3 should conta in  

t h e  t e r m  l og  x as i n  t h e  case when j = 1, 2. The c o e f f i c i e n t  of t h e  above 
equat ion can be ca l cu la t ed  from t h e  following formula: 

3 3 

p(  ri + s)’ - ( r i  + s)’ + (Y’ -. p ) (  ri + J) - 
d/r 9 

Ai, = ci 
tga[(t/ + s)‘ - 2 ( ~ ’  + I)(rj + J)’ + d] 

( j  = 1, 2, 3, * * * ,  8); (J 2 ,  4, 6 ,  8 ,  10, * )  J 

(j= 1,2, and 3 -- when v i s  an in t ege r )  
(s= 0,2,4,6,8 ,... 1 

11 



. We see from the above equation, the series of X. (x) and Y. (x) are also conver- /141 
J J 

gent. 

The general solution for the vibration of a conical shell is found by the 
above method. The ratio between the eight constants C is determined by the 

eight boundary conditions, and the eigenfrequencies can be found. The exact 
solution can be obtained in this way. 
the calculations are obviously too complicated, unless we use high speed compu- 
tors. Therefore, we shall later introduce a simplified calculation method. 
But we must first discuss the treatment of the boundary conditions at the ver- 
tex of a whole conical shell. 

j 

However, from the engineering view point; 

4 .  Treatment of the Boundary Conditions at the Vertex 

We already know that the thin shell theory equations are not valid in the 
vicinity of the vertex of a whole conical shell. 
that the effect of the vertex on the characteristics of the conical shell as a 
whole is very small. 
and forces on the vertex, which warrant further discussion. 

It has been stated previously 

The boundary conditions involve the local displacements 

Usually there are two different cases when prescribing the boundary condi- 
tions at the vertex: 
(restricted vertex); (b) Axial displacement allowed (free vertex). For clarity, 
we shall not discuss the case when arbitrary displacements are allowed, for 
this case is basically similar to the free vertex case mentioned above. 

(a) Axial displacement or any displacements not allowed 

For case (a), note that only the axial displacement is restricted. 
requirement that the displacement at the vertex should be single valued, we 
also set 

Due tothe 

which is equivalent to inelastic fixed end conditions. 
Z. (x) and X. (x), the properties of Y. (x) can be obtained, where we must make 
C2 = C4 = C6 = C8 = 0. 
der the correctness of the above solutions at the vertex because qualitative 
results are sufficient. 
must start from the form of the equations and the solutions. 
cussed elsewhere). 
terminant which is determined by the boundary conditions at the base. 

From the solutions of- 

J J J 
Inhis case, in general, it is not necessary to consi- 

(As for the axisymmetric case when n = 0 or v = 0 ,  we 
This will be dis- 

Then the characteristic equations become a fourth order de- 

For case (b), using the condition that the displacement of the vertex be 
single valued, the boundary conditions are written as 

where N is the tension in the x direction, Qx is the lateral force, and P is 
the external force in the axial direction. Usually there is no outside force 
at the vertex, so we shall take P = 0 from now on. Because of the inaccuracy 

X 
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. of t h e  equat ions and t h e  s o l u t i o n s  near  the v e r t e x  ( i n  t h e  v i c i n i t y  of x = O), 
when making q u a n t i t a t i v e  c a l c u l a t i o n s ,  we should reconsider  t h e  t reatment  of 
t h e  boundary condi t ions.  According t o  the previous r e s u l t  t h a t  t h e  e f f e c t  on 
t h e  c h a r a c t e r i s t i c  values  of t h e  body as a whole i s  minute, owing t o  t h e  com- 
p a r a t i v e l y  s m a l l  volume and energy of the region nea r  t h e  ve r t ex ,  w e  suggest 
t h a t  i n s t e a d  of applying t h e  boundary condi t ions (23) a t  x = 0, w e  apply them 
a t x = x :  

. 

S 

a2 (24) 
(N,cosa  -4- Qrdna)xce inod~ - - m,[TjS(ucosa -4- wsinar) 

L. 
A t x = x :  

E 

x 

by t h e  g e n e r a l l y  accepted l i m i t  h /x  t g  a 5 1 / 2 5  - f o r  t h e  v a l i d i t y  of t h e  equat ions 
of t h i n  s h e l l  theory.  We t a k e  

i s  a s m a l l  va lue  (compared t o  the t o t a l  l eng th  x ). Its va lue  is  determined 
S 1 

%a = 25 h/ tg  a; , 
2 where i n  equa t ion  ( 2 4 )  m 

This kind of  t reatment  is  reasonable.  From t h e  c h a r a c t e r  of t h e  v i b r a t i o n a l  
mode f u n c t i o n  ( t h e  product of xr j  with the curve i n  Figure 1 and t h e  v i b r a t i o n a l  
mode shown i n  Figure 4), w e  see than t h e r e  i s  almost no s t r a i n  i n  t h e  v i c i n i t y  
of t h e  vertex. That is, t h e  displacements of i n d i v i d u a l  p o i n t s  i n  the v e r t e x  
region are almost e x a c t l y  equal  t o  t h e  displacement of vertex i t s e l f  ( a l l  zero 
o r  some cons t an t  va lue ) .  Therefore,  w e  can regard t h e  vertex region ( t h e  re- 
gion whose l eng th  i s  x ) as i n e l a s t i c .  This i s  very similar t o  t h e  s u b s t i t u -  

t i o n  of t h e  displacement a t  x = x 

t h e  same t i m e ,  w e  can s i m p l i f y  t h e  last cond i t ion  i n  equat ion (24),  i .e . ,  s i n c e  
t h e  vertex region i s  considered i n e l a s t i c ,  w e  can reduce t h e  i n t e g r a l ;  i n  addi- 
t i o n ,  w e  n e g l e c t  t h e  s m a l l  mass m 

is  t h e  mass of t h e  v e r t e x  region,  m = (ph/g)ax&sina.  
E E 

E 

f o r  the boundary cond i t ion  a t  x = 0. A t  
E 

and rewrite t h e  condi t ion as 
E 

a t x = x :  Nrcosa i- Q,&u 0 E I 

Expressed i n  terms of displacements,  and using t h e  assumption of i n e l a s t i c i t y  
on t h e  o t h e r  t h r e e  cond i t ions ,  t h e  above equat ions can be writ ten as 

a t x = x :  
E 

2 h tga  
12 i s  a s m a l l  va lue ,  e s p e c i a l l y  a U  o r  approximately w r i t t e n  as ax = 0 ,  because 

when t h e  ang le  a is  s m a l l .  F i n a l l y ,  t he  r e s u l t s  from t h e  a p p l i c a t i o n  of t h i n  
s h e l l  t h e o r y i n d i c a t e  t h e  e f f e c t  of an approximate boundary cond i t ion  on t h e  
c h a r a c t e r i s t i c s  of v i b r a t i o n  i s  r a t h e r  small. Therefore,  t h e  above suggested 
t reatment  can be  accepted. The s o l u t i o n  t o  t h e  problem is  s i m i l a r  t o  t h a t  of 
t h e  t runca ted  c o n i c a l  s h e l l .  Of course, as discussed i n  Sect ion 11, t h e  above 
cons ide ra t ions  are no t  app l i cab le  t o  s h e l l s  w i t h  very s m a l l  cone angle  
(a < 5" - 10') o r  very s h o r t  stubby s h e l l s ,  
consider  t hose  as v a r i a b l e  c r o s s  sec t ion  beams and c a l c u l a t e  t h e  bending vibra- 
t ions .  

1 3  

I n  such a case w e  should i n  g e n e r a l  



5. Simplif ied Calculat ions and t h e  P a r a l l e l  
Springs Concept 

W e  have neglected t h e  e f f e c t s  of the l o n g i t u d i n a l  and t h e  c i r cumfe ren t i a l  
displacements u ,  v on t h e  change of curvature  and t h e  t o r s i o n a l  rate. Thus 
t h e  t h i r d  equat ion i n  equat ions (1) contains  t h e  terms f o r  t h e  i n t e r n a l  moments 
due t o  bending and t o r s i o n ,  while  t h e  f i r s t  and t h e  second equat ions con ta in  
only t h e  terms f o r  t h e  i n t e r n a l  f o r c e s  due t o  membrane t ens ion .  This charac- 
t e r i s t ic  i m p l i e s  t h a t  i f  w e  s e p a r a t e  t h e  v i b r a t i o n  problem i n t o  two p a r t s ,  i .e . ,  
u s ing  no-moment theory (membrane theory)  and pure moment theory (equivalent  t o  
t h i n  p l a t e  bending theo ry ) ,  and combine the  two, t h e  c a l c u l a t i o n s  would be  
g r e a t l y  s i m p l i f i e d .  Pure bending theory means t h a t  w e  neg lec t  t h e  membrane re- 
s i s t a n c e  and consider  only t h e  r e s i s t a n c e  to bending moments. The equat ion is 
composed of the moment terms and t h e  i n e r t i a  terms i n  t h e  t h i r d  equation. This 
form a c t u a l l y  u t i l i z e s  t h e  concepts of t h i n  p l a t e  bending theory (neglected 
middle plane d i s t o r t i o n  - t h e  displacements u, v) t o  compute t h e  r e s u l t s  f o r  
t h e  s h e l l .  Thus t h e  c a l c u l a t i o n s  a r e  very simple. 

Now w e  e x p l a i n  t h e  underlying physical  concepts f o r  t h e  above s i m p l i f i e d  
method. L e t  us make a phys ica l  model f o r  a n  a r b i t r a r y  element on t h e  s h e l l :  
s e p a r a t e  t h e  elastic r e s t o r i n g  fo rces  due t o  d i s t o r t i o n  i n t o  two s e p a r a t e  por- 
t i o n s ,  one is t h e  membrane r e s i s t a n c e ,  the o t h e r  is  t h e  r e s i s t a n c e  t o  bending 
moments. 
following f i g u r e  ( t h e  s p r i n g  cons t an t s  k and k r ep resen t  t h e  e l a s t i c i t y  of 

They are schematical ly  represented by t h e  s p r i n g s  1 and 2 i n  t h e  

1 2 
t h e  above two por t ions ) .  The element of t h e  s h e l l  
material  i s  represented by t h e  m a s s  m i n  Figure 2. 
Then w e  regard t h e  whole s h e l l  as a system w i t h  i n f i -  
n i t e  degrees of freedom, i.e., composed of an i n f i n i t e  
number of these single-degree-of-freedom systems. The 
s p r i n g  cmstzzlt-s are fi inctions of t h e  coordinates .  

3; 
m T 

The d i f f e r e n t i a l  equat ion (without damping) f o r  /143 
t h e  p a r a l l e l  sp r ing  system shown i n  Figure 2 i s  Figure 2. 

(26) 
d'x , 
d? ' b x  + 4 2 %  - m - 

Its eigenfrequency i s  

where w 
eigenfrequency f o r  m a s s  m w i t h  s p r i n g  2 alone. 

i s  t h e  eigenfrequency of mass m w i t h  sp r ing  1 alone,  and w is  t h e  1 2 

For a gene ra l  elastic body, i f  i t s  equat ions of motion can be  w r i t t e n  i n  
t h e  form of equat ion (26),  w e  have 

where K (6)and K ( e )  are l i n e a r  functions of t h e  v a r i a b l e  f o r  i t s  d e r i v a t i v e s .  1 2 

1 4  



Then, under c e r t a i n  condi t ions,  i t s  eigenfrequency can b e  ca l cu la t ed  i n  a manner 
similar t o  equat ion (27). For in s t ance ,  t h i s  method can c a l c u l a t e  very accur- 

. a t e l y “ )  t h e  n a t u r a l  frequency of a simply supported beam under t ens ion  T (addi- 
t i o n  of s t r i n g  v i b r a t i o n  and lateral  v i b r a t i o n  of t h e  beam). 

Note t h a t  when t h e  r e s u l t s  f o r  t h e  v i b r a t i o n a l  mode func t ion ,  which s a t i s f y  
a l l  t h e  boundary condi t ions,  are exac t ly  t h e  same when der ived from two e n t i r e l y  

d i f f e r e n t  t h e o r i e s ,  then t h e  s o l u t i o n s  must be  c o r r e c t ( 2 ) .  
above mentioned h o r i z o n t a l  beam problem. 
then very good approximate s o l u t i o n s  can be  obtained, such as i n  t h e  case of 
t h e  c i r c u l a r  c y l i n d r i c a l  s h e l l .  I n  t h e  case of t h e  con ica l  s h e l l  t h i s  is  a l s o  
t r u e .  Because t h e  s o l u t i o n s  f o r  both t h e o r i e s  are i n  t h e  form of power series 
( s i m i l a r  c h a r a c t e r i s t i c s ) ,  t h e  v i b r a t i o n  modes are s i m i l a r .  From t h i s  d i scuss ion ,  

w e  n o t e  t h a t  t h e  phys ica l  model of t h e  paral le l  sp r ings  system does desc r ibe  t h e  
a c t u a l  s i t u a t i o n ,  and t h e  above s i m p l i f i c a t i o n  method can be  used. 
a l s o  po in t  out  t h a t  t h i s  method can b e  used t o  c a l c u l a t e  o t h e r  problems connec- 
t e d  wi th  the s t a b i l i t y  o r  v i b r a t i o n  of s h e l l s  i n  general .  

One example i s  t h e  
I f  t h e  v i b r a t i o n  modes are similar, 

W e  should 

Obviously, t h e  above theory can a l s o  be explained i n  terms of energy. How- 
ever, t h i s  w i l l  no t  b e  discussed i n  t h i s  paper. 

According t o  t h i s  method, t h e  problem can be  decomposed i n t o  t h e  following 
two sets of equations: 

“) The equat ion of motion and t h e  eigenfrequency of a simply supported beam 
with t ens ion  are as follows: 

The equat ion of motion corresponds t o  equation (28). 
t y  constant ,  and m i s  t h e  mass p e r  u n i t  length.  Calculat ing s e p a r a t e l y  

Here E1 i s  t h e  r i g i d i -  

PY by and - -m$ w e  can ob ta in  q ’ ZG, , ,,,, *e,; from from T w *  m 

which equat ion (27)  can be  shown t o  be s a t i s f i e d .  
U 3F 

(2) The d e t a i l s  of t h e  proof s h a l l  be discussed i n  another paper. 
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The s o l u t i o n  of t h e s e  equat ions s h a l l  be  discussed i n  t h e  fol lowing two /144 
s e c t i o n s .  

When us ing  t h i s  method, w e  can d iv ide  t h e  t o t a l  boundary condi t ions ( i n  

In  t h e  membrane theory c a l c u l a t i o n s ,  t h e  t a n g e n t i a l  component of t h e  
gene ra l  e i g h t )  i n t o  two sets,  corresponding t o  t h e  two sets of s epa ra t ed  equa- 
t i o n s .  
displacements u ,  v i n  t h e  middle plane must be  s a t i s f i e d  on t h e  boundaries 
( four  cond i t ions ) .  I n  t h e  pure bending theory c a l c u l a t i o n s ,  t h e  lateral com- 
ponent of t h e  displacement w must be s a t i s f i e d  on t h e  boundaries ( four  condi- 
t i o n s ) .  Of course,  t h i s  kind of treatment r e l axes  t h e  r e s t r i c t i o n s ,  because i n  
t h e  membrane theory c a l c u l a t i o n s  t h e  lateral  component of t h e  displacement w 
does n o t  n e c e s s a r i l y  s a t i s f y  t h e  t o t a l  boundary condi t ions.  

cond i t ions  on u and v i s  a l s o  questionable.  
of t h e s e  s e p a r a t e  c a l c u l a t i o n s ,  t h e s e  problems are a l l  secondary, and should 
n o t  induce l a r g e  e r r o r s .  
tel ls  us t h e  e f f e c t  due t o  s l i g h t  boundary cond i t ion  dev ia t ions  i s  n o t  l a r g e .  
Thus t h e  above t reatment  i s  acceptable.  

But t h i s  d i s c r e  ancy 
i s  no t  l a r g e .  Besides, i n  t h e  bending theory,  t h e  a r b i t r a r i n e s s  of t h e  boun !l a ry  

However, according t o  t h e  c h a r a c t e r  

Furthermore, experience i n  t h i n  s h e l l  theory r e sea rch  

To check t h e  accuracy of t h e  above method, w e  c a l c u l a t e d  t h e  v i b r a t i o n a l  
c h a r a c t e r i s t i c s  of t h e  case when a = 0, o r  t h e  c i r c u l a r  c y l i n d r i c a l  s h e l l ,  
because t h e r e  have been more s t u d i e s  f o r  comparison i n  t h i s  case. 

6. Calculat ion f o r  t h e  Vibrat ion of a C i rcu la r  
Cy l ind r i ca l  S h e l l  

Using t h e  above method, t h e  c a l c u l a t i o n s  of t h e  c i r c u l a r  c y l i n d r i c a l  s h e l l  
can b e  obtained from equat ions (29) and ( 3 0 )  by s e t t i n g  a = 0: 

I. Membrane Theory Ca lcu la t ions  

For s i m p l i c i t y ,  w e  s t i l l  neg lec t  t he  terms due t o  t h e  t a n g e n t i a l  components 
of t h e  i n e r t i a  fo rces .  The s o l u t i o n s  of u, v,  w are assumed t o  be  of t h e  form: 

u - ul(x) cos n0 sin %e, 

v - vl(r) sin ne sin w,  
~ ~ ( w ) ~ ~ ~ n e s i n % c ,  

S u b s t i t u t i o n  i n t o  equat ion (31)  and sepa ra t ion  of t h e  v a r i a b l e s  r e s u l t s  i n  

(33) 
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2n2&/(1 - &a'), b2 =!&/(i - "a'). Note that for the few lowest 

1 , & a ' < < l ,  

g E  > 100, 

g E  g E  E# g E  where 

order eigenfrequencies which are usually calculated, 

take g E  0' BE.1 Because in most cases a2poLi. ' I we can even 

holds. We can g E  

hl * 2 n 2 d ,  ba a - n'po: ' 

I to be true. Thus the solution for W,(x) is 

A- 

C2, C3, C4 are undetermined constants, and h = / From equa- 
L 

where C1, 

where 

and 

Using the corresponding boundary conditions for the membrane theory equations, 
we can derive the characteristic equation and solve for the eigenfrequencies. 
For instance, in the case of freely supported ends: at x = 0 and x = R, 

We see that this is similar to the vibration of the simply supported beam. For 

17 



the case when both ends are rigidly supported, at x = 0 and x = R, u = v = 0. 
The characteristic equation is 

1 + "( 2 & - ;))sin A l l  sh 111 = cos 111 4 ch All, (39) 

&-!mq 
where S,tl,, From this we can cadculate the eigenfrequencies. 

The above results can only be applied to a few low order eigenfrequencies. 
If we want to calculate the higher order eigenfrequencies, we must abandon the 

assumption and retain '> '1,. Take 

where 

We see that the above calculations are similar to the calculations of the /146 
vibration of an elastic beam, which is relatively simple. 

11. Pure Bending Theory Calculations 

For the solution of equation (32), let w be of the form 
w - W,(x)  cosnesinolt, i (40) 

Substituting into equation (32) and separating the variables, we obtain 

The solution is 

For the case when both ends are freely supported, where at x = 0 and x = R, 

For the case when both ends are rigidly supported, where at x = 0 and x = R, 
w = - -  aw - 0, the characteristic equation is 

ax 
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I- .- 
n’ J a’ 

= c o s J ~ - - l . c h  n2 g+-1, 
a’ 

(44) 

I 

where &=d(g+$)/(@--?$).i From the s o l u t i o n  of w 2 w e  can f i n d  t h e  eigen- 

frequency from t h e  equat ion Q) = d w i  + G!. 

W e  can see from t h e  above a n a l y s i s  t h a t  t h e  v i b r a t i o n a l  mode f u n c t i o n s  
der ived from t h e s e  two s e p a r a t e  t h e o r i e s  have t h e  same cha rac t e r  and form. 
This agrees  wi th  t h e  requirement of t h e  c a l c u l a t i o n  method. Besides, t h e  charac- 
t e r i s t i c . e q u a t i o n s  under t h e  corresponding boundary condi t ions are a l s o  s i m i l a r .  
Fu r the r  n o t e  t h a t  when using t h i s  method t h e  work r equ i r ed  f o r  t h e  c a l c u l a t i o n s  
is equ iva len t  t o  t h a t  f o r  t h e  v i b r a t i n g  e las t ic  beam. Its s i m p l i c i t y  is  ev iden t .  

To check t h e  accuracy of t h e  eigenfrequency (0 - d w i  + 4) 1 ca lcu la t ed  by 

t h i s  method, ve w i l l  apply t h e  results t o  a s p e c i f i c  example, and compare w i t h  
t h e  e x i s t i n g  research (Ref. 18 - 20) .  

I 

Take a simply supported c i r c u l a r  c y l i n d r i c a l  s h e l l  w i th  t h e  following data:  

a = 20 cm, R = 54 c m ,  h = 0.80 mm 

Kg/cm , p/g = 7.95 x 
6 2 2 4  E = 2.0 x 10 Kg*sec / c m  , 1-1 = 0.28. 

For d i f f e r e n t  values  of n ,  t h e  lowest (m = 1) frequencies  (f  = W / ~ I T )  are tabu- 
l a t e d  as follows: 

Method of Calculat ion and 
Experimental Resu l t s  

Theory of Arnold and Warburton 

Theory of Baron and Bel ich (Ref. 

Theory of Brelavskiy 
Experiments of Brelavskiy 

(Ref. 18) 

20) 

Presen t  Theory 

/147  

Eigenfrequency f = W / ~ T  (m = 1 )  

n = 3 1 n = 4  l n = 5  ( n = 6  / n = 8  I n = l O  

We see t h a t  t h e  r e s u l t s  from t h e  above c a l c u l a t i o n s  are s a t i s f a c t o r y ,  except  
t h e  case 
f a c t  t h a t  t h e  e r r o r  i s  l a r g e r  i n  t h e  t h i n  s h e l l  theory when n i s  s m a l l .  Note 

n = 3 ,  where t h e  d i f f e r e n c e  i s  l a r g e r .  This i s  probably due t o  t h e  
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t h a t  t h e  c a l c u l a t i o n s  of Baron and Bleich (Ref. 20) are based on a similar physi-  

energy method and so lves  f o r  t h e  so lu t ions  using t h e  r e s u l t s  from t h e  membrane 
theory as t h e  approximate v i b r a t i o n  mode, wh i l e  t h e  p re sen t  paper uses  a n a l y t i -  
ca l  methods of two s e p a r a t e  t h e o r i e s  when seeking t h e  s o l u t i o n .  Since t h e  re- 
s u l t s  f o r  t h e  v i b r a t i o n  mode are t h e  same o r  similar,  our method should be more 
a c c u r a t e  (when n > 3 ) .  

. cal  concept as t h e  p re sen t  paper. The d i f f e rence  is  t h a t  t h e  former uses  an 

' 

7 .  Calcu la t ions  f o r  t h e  Vibrations of a Conical S h e l l  

I. Using t h e  No-moment Theory (Membrane Theory) 

For t h e  s o l u t i o n s  of equat ions (29), w e  a l s o  assume t h e  answer is  i n  t h e  
form of  equat ion ( 3 3 ) .  
v ious ly  discussed assumptions and method of c a l c u l a t i o n ,  t h e  following inde- 
pendent equat ion f o r  W (x) is  obtained: 

A f t e r  s epa ra t ing  t h e  v a r i a b l e s ,  and using t h e  pre- 

1 

A'( W , )  - A'(Wl) + eWl - '' tg2 a L(gW1)  - 0 ,  ( 4 5 )  
(1 - P*)  I 

(1 - P2)  ";, s: = f 
The r e l a t i o n s h i p s  between U V and W are expressed by 1' 1 1 where &?E 

equat ions (4a) and (4b). 

L e t  t h e  s o l u t i o n  W (x) b e  i n  t h e  form of a power series: 1 
4 a  

S u b s t i t u t e  i n t o  equat ion (45) ,  and use  the cond i t ion  t h a t  t h e  c o e f f i c i e n t s  of 
each power of t h e  func t ion  be  zero.  are then  found. 

From t h e  d e f i n i t i o n  of a series w e  have c = c  = 0. Therefore,  when 

The i n d i c e s  r+ and c .  

j ,-1 j ,-2 
J 3 s  

s = 0,  w e  f i n d  
ri = r1.2.3.4 f L[(1++) 2 * ( 1 - 3 1 .  

( 4 7 )  

when v i s  l a r g e  ( f o r  example when a < 30°), and because A 2  >> 1, w e  can t ake  

a a a 1 
1 2  2 2 2 

W e  cont inue t o  s o l v e  f o r  t h e  value of c . We f i n d  c = c = c = ... - 
( 4 8 )  rl =I -(I + i ) ,  r' = -(I - i ) ,  r3 = - -(I + i ) ,  

j s  j l  j 3  j 5  

r4 = --(I - i ) ,  

- 

= 0 ,  b u t  
- Z(V' + + 5)z + a j ,2s+l = c  

Cir  = 
(1 - P2) ri + 5 ) ' -  (rj + I)' i- e 

( 5 -  2, 4, 6, 8, - (49) 

I f  w e  set t h e  a r b i t r a r y  constant  c = 1, w e  can d e f i n e  t h e  following func t ion  
30 
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= R ~ ( F , ~ )  + i * Im( Frj ) ,  , (XB, tg a)’ 
(1 - p’)’” 

X 

Then the lateral vibrational mode function W (x) can be written as Cj 1 
4 

1148 
(50) - 
(cont.) 

where c is an undetermined constant (in general complex). The convergence of 

F 
j 

can be determined from the Cauchy criteria 
rj 

( 5 2 )  - 2(Y’  + l ) ( r i  + 2)’ + d (XQ, tg a)’ - ( X 9 1  tg a)’ 

(1  - p’) ’ I-- lim Pi : r ,  .)’ + s)’ - (rj + 5)’ + e 1(1 - p’) 

(wQ1 tg a)* 
( 1  - p2) r j 

When (1, the function F is convergent. From the calculations, this 

requirement is satisfied for most low-order eigenfrequencies. Because usually 
it is not necessary to calculate the higher order eigenfrequencies, the above 
solutions are sufficient for practical purposes. If we only want the first two 
lowest order frequencies, the above series converges so fast that two or three 
terms already result in threedigit accuracy. This is the main advantage of 
such a method. It avoids the difficulties encountered in solving for the exact 
solutions and therefore possesses a certain practical value. 

After W,(x) is found, it is not difficult to obtain U, (x) and V, (x): 
I 

I I 

I 

where 

(53) 

(54) 
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Obviously both series are convergent. 

determinant)  from which we can so lve  for t h e  eigenfrequencies .  
boundary condi t ions  when using t h e  no-moment theory f o r  a t runca ted  con ica l  
s h e l l .  These are represented by t h e  displacements u, v or  t h e  tens ion .  For /149 
example, i n  t h e  case when both ends are f ixed ,  w e  have 

Applying t h e  boundary condi t ions  t o  t h e  

There are four  
. s o l u t i o n ,  a c h a r a c t e r i s t i c  equat ion can be  obtained ( i n  general ,  a fourth-order 

a t x = x O a n d x = x  u = v = O .  1’ 

For a whole con ica l  s h e l l ,  w e  must take  c = c4 = 0. 

W e  must po in t  out  t h a t  s ince  rl and r2’ r3 and r are complex conjugates ,  4 
t h e  fol lowing conjugate r e l a t i o n s h i p  between t h e  v i b r a t i o n a l  mode func t ions  can 
be  proven: 

Re(Fr,)=Re(F,) ,  Re(Fra)=Re(Fr,) Irn(F,,)= -Im(Fr,) , h ( F r a ) =  -Im( Fr4) ; 
Re(Grl)=Re(Gr,), Re(Gra)=Re(Cr,) y Im( Gr,)= -Im( Gr,) , Im( Gra) = -Im( G,,); } (55) 
Re(Hrl)= Re(Hra) Re(Hra)= Re(Hr,) , Im ( = - Im( H , )  , Irn ( Hra) = - Im (H,,) . 

These conjugate r e l a t i o n s h i p s  g r e a t l y  s implify t h e  c a l c u l a t i o n s  of t h e  func t ions  
and a l s o  s implify the  s o l u t i o n s  of t he  c h a r a c t e r i s t i c  equat ions.  

11. Usinp Pure Moment Theory (Bending Theory) 

It is  easy t o  see t h a t  so lv ing  equation (30) w i l l  be much s impler  than  when 
using membrane theory.  
f o r  t h e  l a t e r a l  displacement w is  a l s o  assumed t o  be i n  the  form of equat ion ( 4 0 ) .  
S u b s t i t u t i n g  i n t o  equat ion (30) we have 

The s o l u t i o n  is  s t i l l  a Bessel funct ion.  The s o l u t i o n  

The s o l u t i o n  i s  

w2(x) = A I ” ( ~ X )  + B Y , ( ~ x )  + C I , ( ~ X )  + ~ ~ d k x ) ,  (57) 

where J (kx) ,  Y (kx), I (kx), K (kx) a r e  Besses funct ions  of order  v .  The 

boundary condi t ions are s i m i l a r  t o  those f o r  t h e  bending of a t h i n  p l a t e ,  e .g .  
V V V V 

aw f o r  f ixed  edges a t  x = xo and x = x w = - = 0, 1’ ax 

x l s  Qx x 

f o r  simply supported edges: a t  x = xo and x = x 

f o r  f r e e  edges: 

w = M = 0 ,  1’ X 

= M  = O .  at  x = xo and x = 

For t h e  r e s t r i c t i o n  of t h e  ve r t ex  in t h e  case of a whole s h e l l ,  w e  should 
t ake  B = D = 0. w can be found from the c h a r a c t e r i s t i c  equat ion.  F i n a l l y ,  2 

2 2 2  
t h e  eigenfrequencies  are obtained from w = w1 w2. 
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8. A P r a c t i c a l  Example and Discussions 

I n  t h e  following w e  s h a l l  ca l cu la t e  t h e  eigenfrequencies  and t h e  v i b r a t i o n  
. mode of a whole con ica l  s h e l l  wi th  a = 30'. 

experimental  r e s u l t s  and d i scuss  them. The d a t a  are taken t o  be as follows: 
We s h a l l  then  compare with the  

a = 30', x1 = 30 cm, h = 0.33 ,  0.71 and 1.64 mm, 

6 2 2 4  E = 2.05 x 10 Kg/cm , p/g = 7.95 x Kg*sec / c m  , = 0 . 3 0 .  

Consider t h e  case when a r e s t r i c t e d  ve r t ex  and a f ixed  base are t h e  boun- 
dary condi t ions .  
c a l c u l a t e  t h e  lowest few eigenfrequencies corresponding t o  n = 3 ,  4 ,  5,  ..., 8. 
The r e s u l t s  are shown i n  Figure 3 (where w 

from no-moment theory and pure moment theory r e spec t ive ly ,  and w(w',w'') is  t h e  
f i n a l  combined answer). 

while  w2 is  j u s t  t h e  opposi te .  

corresponds t o  t h e  lowest eigenfrequency v a r i e s  wi th  t h e  s h e l l  th ickness  (o r  t h e  
r a t i o  between s h e l l  th ickness  and t h e  diameter).  When t h e  o t h e r  dimensions a r e  
t h e  same, then t h e  l a r g e r  t h e  h ,  t h e  smaller t h e  n ,  which corresponds t o  t h e  
lowest frequency. 

t h e  th ickness  h,  but  from pure moment theory w 

Using t h e  method developed i n  t h e  two previous s e c t i o n s ,  w e  

and w (ut2,  ant2)  are t h e  r e s u l t s  

W e  see t h a t  w v a r i e s  i nve r se ly  as a func t ion  of n ,  

The number n which 

1 2 

1 
This is  t o  be  expected. 

This is because from no-moment theory,  w1 is independent of 

i s  p ropor t iona l  t o  h .  2 

8 

From Figure 3,  w e  n o t i c e  t h a t ,  when 1150 
, "* v ib ra t ing  under t h e  lowest eigenfrequency, 

Figure 3 .  

the  e f f e c t  of membrane tens ion  (or  t h e  
corresponding s t r a i n  energy) is  j u s t  

both curves of w and w are concave. 1 2 
Th i s  r u l e  may b e  of some value i n  genera l  
s h e l l  research ,  f o r  i t  i s  obviously not  
l imi ted  t o  con ica l  s h e l l s  and can be 
appl ied t o  genera l  s h e l l s .  

eqiia: t o  t h e  e f f e c t  of t h e  momenta, for 

w '  -- b a s i c  frequency f o r  a We made some experiments t o  check 
h = 0.71 mm s h e l l ;  w" -- b a s i c  
frequency f o r  a h = 0 . 3 3  m s h e l l ;  
0 -- experimental  r e s u l t s  f o r  

w';  C l  -- experimental  r e s u l t s  
f o r  w". s p e c i f i c  degree of imperfect ion.  The 

the r e s u l t s .  The s h e l l  is made from t h i n  
plates and shaped on a mold. The seam 
is percuss ive ly  welded ( u n t i l  t h e  s h e l l  
is w a t e r t i g h t ) ,  and t h e  specimen has a 

bottom is welded t o  a t h i c k  f lange .  
The v e r t e x  and t h e  bottom are both a t tached  

f i rmly  t o  a frame. The v i b r a t i o n s  a r e  induced both by t h e  i n e r t i a  a c t i v a t i o n  
method and by t h e  electromagnet ac t iva t ion  method. The r e s u l t s  by t h e  two methods 
are e s s e n t i a l l y  similar, as shown i n  F i g u r e  3 .  We see t h a t  agreement between 
theory and t h e  experiments are general ly  good. 
of s h e l l  theory,  s h e l l  imperfect ions l i k e  i n i t i a l  curva ture  do not  g r e a t l y  
a f f e c t  i t s  c h a r a c t e r i s t i c s ,  a t  least when t h e  va lue  of n is l a r g e .  This i s  

According t o  t h e  b a s i c  concepts 
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because t h e  i n i t i a l  curvature  has  d e f i n i t e  e f f e c t s  on the  membrane e f f e c t  (de- 
creases i t s  e f f e c t ,  but  not  very much), but  has  no e f f e c t  on t h e  pure bending 
e f f e c t .  The experimental  r e s u l t s  i n  Figure 3 are a l i t t l e  low f o r  s m a l l  n ,  which 
v e r i f i e s  t h i s  pred ic t ion .  
check t h e  accuracy of t h e  c a l c u l a t i o n s  a t  

0 

, Therefore,  we can a t  least use t h e  experiments t o  
l a r g e  n. 

Figure 4 shows t h e  v i b r a t i o n  mode 
so lu t ions  from t h e  no-moment theory and 
the pure moment theory when n = 5 
(corresponds t o  t h e  lowest 0'). Their  
c h a r a c t e r i s t i c s  a r e  similar bu t  t h e i r  
form is  not  t h e  same. Therefore,  t h e  
r e s u l t s  are approximate and t h e  values  
a re  lower than t h e  exac t  so lu t ion .  From 
the  phys ica l  view po in t ,  t h e  d i f f e r e n c e  
of t h e s e  two v i b r a t i o n  modes means relaxed 

condi t ions are reduced, s o  w e  p r e d i c t  t h e  
r e s u l t s  are on t h e  low s i d e .  This con- 

Figure 4 .  r e s t r a i n t s .  In  add i t ion ,  t h e  boundary 

c lus ion  can a l s o  be proven mathematically, which w i l l  no t  be  discussed here .  
From t h e  p red ic t ions  and t h e  preliminary experimental  r e s u l t s ,  w e  expect t h e  
a c t u a l  v i b r a t i o n  mode l ies  between t h e  two curves i n  F igure  4 .  
s i t u a t i o n  s t i l l  r equ i r e s  f u r t h e r  study. The accuracy of t h e  c a l c u l a t i o n s  is 
obviously r e l a t e d  t o  t h e  s i m i l a r i t i e s  of t h e  two v i b r a t i o n  modes. 
from t h e  above example and t h e  previous c a l c u l a t i o n s  f o r  o t h e r  v i b r a t i o n  prob- 
l e m s ,  t h e  e f f e c t  is  not  l a r g e  -- i . e . ,  although t h e  similarities are poor, i t  
does no t  mean t h e r e  are very l a r g e  e r r o r s  ( i n  genera l ,  smaller than 10 - 20%, 
bu t  sometime may reach 30%). We should note  t h a t  t he  present  method i s  similar 
t o  t h e  concepts of t h e  Dunkerley method, which i s  w e l l  known i n  t h e  c a l c u l a t i o n s  
of t h e  v i b r a t i o n  of many degree of freedom systems. Thus, t h e  order  of magnitude 
of t h e  e r r o r  should a l s o  be similar ( i . e . ,  t h e  r e s u l t s  a r e  accura te  although t h e  
v i b r a t i o n  modes d i f f e r ) .  
whole con ica l  s h e l l  is  q u i t e  d i f f e r e n t ,  and t h e  e r r o r  tends  t o  be  on t h e  l a r g e  
s i d e ,  while  f o r  t runca ted  con ica l  s h e l l s ,  t h e  v i b r a t i o n  modes are very similar 
from t h e  two t h e o r i e s ,  and t h e  r e s u l t s  a re  more c o r r e c t .  

The exac t  

However, 

Also no te  t h a t  t h e  form of t h e  v i b r a t i o n  mode of a 

Of t h e  e x i s t i n g  t h e o r i e s ,  only t h e  research  of Federhofer (Ref. 2) is  able  
t o  c a l c u l a t e  t h e  above example. 
12000, which when h = 1.64, corresponds t o  n - 3 .  
7040 and corresponds t o  n = 4 (or  3 ) .  
know t h a t  t h e  present  r e s u l t s  are on the low s ide .  

H e  ca lcu la ted  t h e  lowest va lue  of w t o  be  
The present  theory ob ta ins  

The d i f f e rence  i s  not  s m a l l .  W e  a l ready  
But Federhofer uses  a sym- 

a 
metric v i b r a t i o n a l  mode func t ion  :x' ( 1 -- =,> , which is  f a r  from r e a l i t y .  

Therefore ,  h i s  r e s u l t s  from t h e  Rayleigh-Ritz method are obviously much l a r g e r .  
W e  should a l s o  po in t  ou t  t h a t  t h e  r e s u l t s  u sua l ly  are much l a r g e r  when w e  attempt 
t o  so lve  d i r e c t l y  wi th  an approximate form of a power func t ion  which c o n s i s t s  
of few terms. 
t h e  r e s u l t s  of Ryayamet (Ref. 21) are 50 - 80% l a r g e r  [ see  (Ref. 22) ] .  The 
author  a l s o  encountered t h i s  s i t u a t i o n  i n  o the r  v i b r a t i o n a l  c a l c u l a t i o n s .  This 
problem should be s tud ied  f u r t h e r ,  both t h e o r e t i c a l l y  and experimental ly .  

/151 
For example, i n  t he  study of t h e  s t a b i l i t y  of con ica l  s h e l l s ,  
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F i n a l l y ,  w e  po in t  out  t h a t  our methods of decomposing t h e  equat ions,  i f  

t i o n  modes and a l s o  t h e  accuracy of t h e  c a l c u l a t i o n s .  This area needs f u r t h e r  
advanced mathematical ly ,  

, study. 

can be used t o  improve t h e  s i m i l a r i t y  of t h e  vibra-  

Comrades Tu Ching-Hua, Lo Tsu-Dao and t h e  o t h e r  comrades who at tended t h e  
October, 1962, P l a t e s  and S h e l l s  Conference have given many va luab le  opinions.  
Comrade Yang Shao-Chi helped check t h e  ca l cu la t ions .  
g r a t e f u l  t o  them. 

The au tho r  i s  deeply 
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